Search results
Results from the WOW.Com Content Network
List of international earthquake acceleration coefficients.A list of earthquake coefficients used in structural design for earthquake engineering [1] around the world. For example, a coefficient of 0.09 indicates that a building is designed that 0.09457 of its weight can be applied horizontally during an earthquake.
In an earthquake, damage to buildings and infrastructure is related more closely to ground motion, of which PGA is a measure, rather than the magnitude of the earthquake itself. For moderate earthquakes, PGA is a reasonably good determinant of damage; in severe earthquakes, damage is more often correlated with peak ground velocity. [3]
Much of an earthquake's total energy as measured by M w is dissipated as friction (resulting in heating of the crust). [52] An earthquake's potential to cause strong ground shaking depends on the comparatively small fraction of energy radiated as seismic waves, and is better measured on the energy magnitude scale, M e. [53]
Ground motion hazard map for Hawaii, based on a 2% probability of exceeding 0.2 second spectral acceleration at 5 Hz in 50 years. Spectral acceleration (SA) is a unit measured in g (the acceleration due to Earth's gravity, equivalent to g-force) that describes the maximum acceleration in an earthquake on an object – specifically a damped, harmonic oscillator moving in one physical dimension.
Seismic intensity scales categorize the intensity or severity of ground shaking (quaking) at a given location, such as resulting from an earthquake.They are distinguished from seismic magnitude scales, which measure the magnitude or overall strength of an earthquake, which may, or perhaps may not, cause perceptible shaking.
The JMA scale is expressed in levels of seismic intensity from 0 to 7 in a manner similar to that of the Mercalli intensity scale, which is not commonly used in Japan.The JMA uses seismic intensity meters to automatically calculate peak ground acceleration in real-time, reporting intensities based on measurements from observation points.
The Richter scale [1] (/ ˈ r ɪ k t ər /), also called the Richter magnitude scale, Richter's magnitude scale, and the Gutenberg–Richter scale, [2] is a measure of the strength of earthquakes, developed by Charles Richter in collaboration with Beno Gutenberg, and presented in Richter's landmark 1935 paper, where he called it the "magnitude scale". [3]
A series of mixed vertical oscillators A plot of the peak acceleration for the mixed vertical oscillators. A response spectrum is a plot of the peak or steady-state response (displacement, velocity or acceleration) of a series of oscillators of varying natural frequency, that are forced into motion by the same base vibration or shock.