Search results
Results from the WOW.Com Content Network
The convex hull of a simple polygon is divided by the polygon into pieces, one of which is the polygon itself and the rest are pockets bounded by a piece of the polygon boundary and a single hull edge. Although many algorithms have been published for the problem of constructing the convex hull of a simple polygon, nearly half of them are ...
Input = a set S of n points Assume that there are at least 2 points in the input set S of points function QuickHull(S) is // Find convex hull from the set S of n points Convex Hull := {} Find left and right most points, say A & B, and add A & B to convex hull Segment AB divides the remaining (n − 2) points into 2 groups S1 and S2 where S1 are points in S that are on the right side of the ...
The closed convex hull of a set is the closure of the convex hull, and the open convex hull is the interior (or in some sources the relative interior) of the convex hull. [ 9 ] The closed convex hull of X {\displaystyle X} is the intersection of all closed half-spaces containing X {\displaystyle X} .
A demo of Graham's scan to find a 2D convex hull. Graham's scan is a method of finding the convex hull of a finite set of points in the plane with time complexity O(n log n). It is named after Ronald Graham, who published the original algorithm in 1972. [1] The algorithm finds all vertices of the convex hull ordered along its boundary.
A 2D demo for Chan's algorithm. Note however that the algorithm divides the points arbitrarily, not by x-coordinate. In computational geometry, Chan's algorithm, [1] named after Timothy M. Chan, is an optimal output-sensitive algorithm to compute the convex hull of a set of points, in 2- or 3-dimensional space.
The convex hull of a set can be equivalently defined to be the set of all convex combinations of points in Q. [11] For example, the convex hull of the set of integers {0,1} is the closed interval of real numbers [0,1], which contains the integer end-points. [7] The convex hull of the unit circle is the closed unit disk, which contains the unit ...
Convex hull in blue In general, a packing refers to any arrangement of a set of spatially-connected, possibly differently-sized or differently-shaped objects in space such that none of them overlap. In the case of the finite sphere packing problem, these objects are restricted to equally-sized spheres.
The problem consists in the maintenance, i.e., keeping track, of the convex hull for input data undergoing a sequence of discrete changes, i.e., when input data elements may be inserted, deleted, or modified. It should be distinguished from the kinetic convex hull, which studies similar problems for continuously moving points. Dynamic convex ...