enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lattice (group) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(group)

    In geometry and group theory, a lattice in the real coordinate space is an infinite set of points in this space with the properties that coordinate-wise addition or subtraction of two points in the lattice produces another lattice point, that the lattice points are all separated by some minimum distance, and that every point in the space is within some maximum distance of a lattice point.

  3. Lattice (discrete subgroup) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(discrete_subgroup)

    Let be a locally compact group and a discrete subgroup (this means that there exists a neighbourhood of the identity element of such that = {}).Then is called a lattice in if in addition there exists a Borel measure on the quotient space / which is finite (i.e. (/) < +) and -invariant (meaning that for any and any open subset / the equality () = is satisfied).

  4. Join and meet - Wikipedia

    en.wikipedia.org/wiki/Join_and_meet

    A partially ordered set that is both a join-semilattice and a meet-semilattice is a lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms ...

  5. Lattice of subgroups - Wikipedia

    en.wikipedia.org/wiki/Lattice_of_subgroups

    Lattice-theoretic information about the lattice of subgroups can sometimes be used to infer information about the original group, an idea that goes back to the work of Øystein Ore (1937, 1938). For instance, as Ore proved , a group is locally cyclic if and only if its lattice of subgroups is distributive .

  6. Unimodular lattice - Wikipedia

    en.wikipedia.org/wiki/Unimodular_lattice

    In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1. The E 8 lattice and the Leech lattice are two famous examples.

  7. List of group theory topics - Wikipedia

    en.wikipedia.org/wiki/List_of_group_theory_topics

    In mathematics and abstract algebra, group theory studies the algebraic structures known as groups.The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms.

  8. Correspondence theorem - Wikipedia

    en.wikipedia.org/wiki/Correspondence_theorem

    More generally, there is a monotone Galois connection (,) between the lattice of subgroups of (not necessarily containing ) and the lattice of subgroups of /: the lower adjoint of a subgroup of is given by () = / and the upper adjoint of a subgroup / of / is a given by (/) =.

  9. Group theory - Wikipedia

    en.wikipedia.org/wiki/Group_theory

    Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.