Search results
Results from the WOW.Com Content Network
Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The height of the lines and bars gives an indication of the maximal power/pulse energy commercially available, while the color codifies the type of laser material (see the figure description for details).
Wavelengths of commercially available lasers. Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The color codifies the type of laser material (see the figure description for more details).
The Nd:YAG laser is the most common laser used in laser designators and laser rangefinders. During the Iran–Iraq War, Iranian soldiers suffered more than 4000 cases of laser eye injury, caused by a variety of Iraqi sources including tank rangefinders. The 1064 nm wavelength of Nd:YAG is thought to be particularly dangerous, as it is invisible ...
A ruby laser is a solid-state laser that uses a synthetic ruby crystal as its gain medium. The first working laser was a ruby laser made by Theodore H. "Ted" Maiman at Hughes Research Laboratories on May 16, 1960. [1] [2] Ruby lasers produce pulses of coherent visible light at a wavelength of 694.3 nm, which is a deep red color.
Laser linewidth from high-power high-gain pulsed laser oscillators, comprising line narrowing optics, is a function of the geometrical and dispersive features of the laser cavity. [29] To a first approximation the laser linewidth, in an optimized cavity, is directly proportional to the beam divergence of the emission multiplied by the inverse ...
Final amplifier of the Nike laser where laser beam energy is increased from 150 J to ~5 kJ by passing through a krypton/fluorine/argon gas mixture excited by irradiation with two opposing 670,000 volt electron beams. An excimer laser typically uses a combination of a noble gas (argon, krypton, or xenon) and a reactive gas (fluorine or chlorine).
In semiconductor laser theory, the optical gain is produced in a semiconductor material. The choice of material depends on the desired wavelength and properties such as modulation speed. It may be a bulk semiconductor, but more often a quantum heterostructure. Pumping may be electrically or optically . All these structures can be described in a ...
A chemical oxygen iodine laser (COIL) is a near–infrared chemical laser. As the beam is infrared, it cannot be seen with the naked eye. It is capable of output power scaling up to megawatts in continuous mode. [citation needed] Its output wavelength is 1315 nm, a transition wavelength of atomic iodine.