enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bond energy - Wikipedia

    en.wikipedia.org/wiki/Bond_energy

    The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,

  3. Bond-dissociation energy - Wikipedia

    en.wikipedia.org/wiki/Bond-dissociation_energy

    The term bond-dissociation energy is similar to the related notion of bond-dissociation enthalpy (or bond enthalpy), which is sometimes used interchangeably.However, some authors make the distinction that the bond-dissociation energy (D 0) refers to the enthalpy change at 0 K, while the term bond-dissociation enthalpy is used for the enthalpy change at 298 K (unambiguously denoted DH° 298).

  4. Carbon–carbon bond - Wikipedia

    en.wikipedia.org/wiki/Carboncarbon_bond

    A carboncarbon bond is a covalent bond between two carbon atoms. [1] The most common form is the single bond : a bond composed of two electrons , one from each of the two atoms. The carboncarbon single bond is a sigma bond and is formed between one hybridized orbital from each of the carbon atoms.

  5. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    Bond energy and bond-dissociation energy are measures of the binding energy between the atoms in a chemical bond. It is the energy required to disassemble a molecule into its constituent atoms. This energy appears as chemical energy , such as that released in chemical explosions , the burning of chemical fuel and biological processes.

  6. Heat of combustion - Wikipedia

    en.wikipedia.org/wiki/Heat_of_combustion

    Since the heat of combustion of these elements is known, the heating value can be calculated using Dulong's Formula: HHV [kJ/g]= 33.87m C + 122.3(m H - m O ÷ 8) + 9.4m S. where m C, m H, m O, m N, and m S are the contents of carbon, hydrogen, oxygen, nitrogen, and sulfur on any (wet, dry or ash free) basis, respectively. [8]

  7. Boudouard reaction - Wikipedia

    en.wikipedia.org/wiki/Boudouard_reaction

    It is the disproportionation of carbon monoxide into carbon dioxide and graphite or its reverse: [1] 2CO ⇌ CO 2 + C Boudouard-Equilibrium at 1 bar calculated with 2 different methods Standard enthalpy of the Boudouard reaction at various temperatures. The Boudouard reaction to form carbon dioxide and carbon is exothermic at all

  8. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  9. Benson group increment theory - Wikipedia

    en.wikipedia.org/wiki/Benson_group_increment_theory

    The C−(C B)(C)(H)2 accounts for the carbon linked to the benzene group on the butyl moiety. The 2' carbon of the butyl group would be C−(C) 3 (H) because it is a tertiary carbon (connecting to three other carbon atoms). The final calculation comes from the CH 3 groups connected to the 2' carbon; C−(C)(H) 3.