enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane. It is also a spherical segment of one base, i.e., bounded by a single plane. If the plane passes through the center of the sphere (forming a great circle ), so that the height of the cap is equal to the radius of the sphere, the spherical ...

  3. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    The volume of the n-ball () can be computed by integrating the volume element in spherical coordinates. The spherical coordinate system has a radial coordinate r and angular coordinates φ 1, …, φ n − 1, where the domain of each φ except φ n − 1 is [0, π), and the domain of φ n − 1 is [0, 2 π). The spherical volume element is:

  4. Spherical shell - Wikipedia

    en.wikipedia.org/wiki/Spherical_shell

    An approximation for the volume of a thin spherical shell is the surface area of the inner sphere multiplied by the thickness t of the shell: [2] V ≈ 4 π r 2 t , {\displaystyle V\approx 4\pi r^{2}t,}

  5. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    The formula for the volume of the ⁠ ⁠-ball can be derived from this by integration. Similarly the surface area element of the ⁠ ( n − 1 ) {\displaystyle (n-1)} ⁠ -sphere of radius ⁠ r {\displaystyle r} ⁠ , which generalizes the area element of the ⁠ 2 {\displaystyle 2} ⁠ -sphere, is given by

  6. Spherical segment - Wikipedia

    en.wikipedia.org/wiki/Spherical_segment

    The surface of the spherical segment (excluding the bases) is called spherical zone. Geometric parameters for spherical segment. If the radius of the sphere is called R , the radii of the spherical segment bases are a and b , and the height of the segment (the distance from one parallel plane to the other) called h , then the volume of the ...

  7. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone aperture angle, i.e., φ is the angle between the rim of the cap and the ...

  8. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    In this case the volume of the band is the volume of the whole sphere, which matches the formula given above. An early study of this problem was written by 17th-century Japanese mathematician Seki Kōwa. According to Smith & Mikami (1914), Seki called this solid an arc-ring, or in Japanese kokan or kokwan. [1]

  9. Truncated icosahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_icosahedron

    The surface area and the volume of the truncated icosahedron of edge length are: [2] = (+ +) = +. The sphericity of a polyhedron describes how closely a polyhedron resembles a sphere. It can be defined as the ratio of the surface area of a sphere with the same volume to the polyhedron's surface area, from which the value is between 0 and 1.