Search results
Results from the WOW.Com Content Network
The smallest such number is 25326001. This means that, if n is less than 25326001 and n is a strong probable prime to bases 2, 3, and 5, then n is prime. Carrying this further, 3825123056546413051 is the smallest number that is a strong pseudoprime to the 9 bases 2, 3, 5, 7, 11, 13, 17, 19, and 23.
The constants listed here are known values of physical constants expressed in SI units; that is, physical quantities that are generally believed to be universal in nature and thus are independent of the unit system in which they are measured. Many of these are redundant, in the sense that they obey a known relationship with other physical ...
Famously, in a discussion between the mathematicians G. H. Hardy and Srinivasa Ramanujan about interesting and uninteresting numbers, Hardy remarked that the number 1729 of the taxicab he had ridden seemed "rather a dull one", and Ramanujan immediately answered that it is interesting, being the smallest number that is the sum of two cubes in ...
A composite strong probable prime to base a is called a strong pseudoprime to base a. Every strong probable prime to base a is also an Euler probable prime to the same base, but not vice versa. The smallest strong pseudoprime base 2 is 2047. [1]: 1004 There are 4842 strong pseudoprimes base 2 that are less than 25·10 9. [1]: 1005
The set N of natural numbers is defined in this system as the smallest set containing 0 and closed under the successor function S defined by S(n) = n ∪ {n}. The structure N, 0, S is a model of the Peano axioms (Goldrei 1996). The existence of the set N is equivalent to the axiom of infinity in ZF set theory.
The second Carmichael number (1105) can be expressed as the sum of two squares in more ways than any smaller number. The third Carmichael number (1729) is the Hardy-Ramanujan Number: the smallest number that can be expressed as the sum of two cubes (of positive numbers) in two different ways.
A highly composite number is a positive integer that has more divisors than all smaller positive integers. If d(n) denotes the number of divisors of a positive integer n, then a positive integer N is highly composite if d(N) > d(n) for all n < N. For example, 6 is highly composite because d(6)=4 and d(n)=1,2,2,3,2 for n=1,2,3,4,5 respectively.
The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality ℵ 0 (that is, the initial ordinal of ℵ 0) is ω but many well-ordered sets with cardinal number ℵ 0 have an ordinal number greater than ω.