enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stress–strain curve - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_curve

    The stress and strain can be normal, shear, or a mixture, and can also be uniaxial, biaxial, or multiaxial, and can even change with time. The form of deformation can be compression, stretching, torsion, rotation, and so on. If not mentioned otherwise, stressstrain curve typically refers to the relationship between axial normal stress and ...

  3. Hardness - Wikipedia

    en.wikipedia.org/wiki/Hardness

    Diagram of a stress-strain curve, showing the relationship between stress (force applied per unit area) and strain or deformation of a ductile metal In solid mechanics , solids generally have three responses to force , depending on the amount of force and the type of material:

  4. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    The strain can be decomposed into a recoverable elastic strain (ε e) and an inelastic strain (ε p). The stress at initial yield is σ 0 . Work hardening , also known as strain hardening , is the process by which a material's load-bearing capacity (strength) increases during plastic (permanent) deformation.

  5. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    Depending on the type of material, size and geometry of the object, and the forces applied, various types of deformation may result. The image to the right shows the engineering stress vs. strain diagram for a typical ductile material such as steel.

  6. Ramberg–Osgood relationship - Wikipedia

    en.wikipedia.org/wiki/Ramberg–Osgood_relationship

    The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stressstrain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition.

  7. Hardening (metallurgy) - Wikipedia

    en.wikipedia.org/wiki/Hardening_(metallurgy)

    Hardening is a metallurgical metalworking process used to increase the hardness of a metal. The hardness of a metal is directly proportional to the uniaxial yield stress at the location of the imposed strain. A harder metal will have a higher resistance to plastic deformation than a less hard metal.

  8. Indentation hardness - Wikipedia

    en.wikipedia.org/wiki/Indentation_hardness

    The Vickers and Brinell hardness scales correlate well over a wide range, however, with Brinell only producing overestimated values at high loads. Indentation procedures can, however, be used to extract genuine stress-strain relationships. Certain criteria need to be met if reliable results are to be obtained.

  9. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stressstrain_analysis

    Stressstrain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...