Search results
Results from the WOW.Com Content Network
A prototype RDE under test at the Marshall Space Flight Centre. A rotating detonation engine (RDE) uses a form of pressure gain combustion, where one or more detonations continuously travel around an annular channel. Computational simulations and experimental results have shown that the RDE has potential in transport and other applications. [1] [2]
On 26 July 2021 (UTC), Japan's space agency JAXA successfully tested a pulse detonation rocket engine in space on a S-520 sounding rocket flight. [9] The upper stage of the rocket used a rotating detonation engine (RDE) as the main engine and a S-shaped pulse detonating engine was used to de-spin the stage after the main engine burn. PDE ...
Several different variations of turbines use this process, the most prominent being the pulse detonation engine and the rotating detonation engine. In recent years, pressure gain combustion has once again gained relevance and is currently being researched for use in propulsion systems and power generation due to its potential for improved ...
The Fickett–Jacobs (FJ) cycle is based on Chapman–Jouguet (CJ) theory, an approximation for the detonation wave's velocity during a detonation. [1] [2] This cycle is researched for rotating detonation engines (RDE), considered to be more efficient than the classical combustion engines that are based on the Brayton or Humphrey cycles. [3]
Axi-symmetric stall, more commonly known as compressor surge; or pressure surge, is a complete breakdown in compression resulting in a reversal of flow and the violent expulsion of previously compressed air out through the engine intake, due to the compressor's inability to continue working against the already-compressed air behind it.
A rotating detonation engine (RDE) [21] might propel airframes in hypersonic flight; on 14 December 2023 engineers at GE Aerospace demonstrated their test rig, which is to combine an RDE with a ramjet/scramjet, in order to evaluate the regimes of rotating detonation combustion. The goal is to achieve sustainable turbine-based combined cycle ...
The Humphrey cycle is the thermodynamic cycle occurring detonation engines such as rotating detonation engines, the pulse detonation engines, and pulse compression detonation systems. It may be considered to be a modification of the Brayton cycle in which the constant-pressure heat addition process of the Brayton cycle is replaced by a constant ...
Unintentional detonation when deflagration is desired is a problem in some devices. In Otto cycle, or gasoline engines it is called engine knocking or pinging, and it causes a loss of power. It can also cause excessive heating, and harsh mechanical shock that can result in eventual engine failure. [29]