Search results
Results from the WOW.Com Content Network
Lithium imide is an inorganic compound with the chemical formula Li 2 N H. This white solid can be formed by a reaction between lithium amide and lithium hydride. [1] LiNH 2 + LiH → Li 2 NH + H 2. The product is light-sensitive and can undergo disproportionation to lithium amide and characteristically red lithium nitride. 2 Li 2 NH → LiNH 2 ...
Lithium amide or lithium azanide is an inorganic compound with the chemical formula LiNH 2. It is a white solid with a tetragonal crystal structure. [1] Lithium amide can be made by treating lithium metal with liquid ammonia: [2] 2 Li + 2 NH 3 → 2 LiNH 2 + H 2. Lithium amide decomposes into ammonia and lithium imide upon heating. [3]
Heating lithium amide with lithium hydride yields lithium imide and hydrogen gas. This reaction takes place as released ammonia reacts with lithium hydride. [2] Heating magnesium amide to about 400 °C yields magnesium imide with the loss of ammonia. Magnesium imide itself decomposes if heated between 455 and 490 °C. [6]
An intramolecular S N 2 reaction by the anion forms the cyclic backbone of morphine. [14] Synthesis of morphine using lithium–halogen exchange. Lithium–halogen exchange is a crucial part of Parham cyclization. [15] In this reaction, an aryl halide (usually iodide or bromide) exchanges with organolithium to form a lithiated arene species.
It is commonly used as Li-ion source in electrolytes for Li-ion batteries as a safer alternative to commonly used lithium hexafluorophosphate. [3] It is made up of one Li cation and a bistriflimide anion.
Lithium is a highly reactive alkali metal that is widely used in various industrial applications due to its unique properties. Lithium compounds are formed by combining lithium with other elements, such as oxygen, sulfur, and chlorine, to form different chemical compounds.
[2] Scheme 1. Directed ortho metalation. The general principle is outlined in scheme 1. An aromatic ring system with a DMG group 1 interacts with an alkyllithium such as n-butyllithium in its specific aggregation state (hence (R-Li) n) to intermediate 2 since the hetero atom on the DMG is a Lewis base and lithium the Lewis acid.
The Group 1 metal (M) is oxidised to its metal ions, and water is reduced to hydrogen gas (H 2) and hydroxide ion (OH −), giving a general equation of: 2 M(s) + 2 H 2 O(l) 2 M + (aq) + 2 OH − (aq) + H 2 (g) [8] The Group 1 metals or alkali metals become more reactive as their number of energy levels inceases.