Search results
Results from the WOW.Com Content Network
An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
In this notation, Stokes' theorem reads as = . In finite element analysis, the first stage is often the approximation of the domain of interest by a triangulation, T. For example, a curve would be approximated as a union of straight line segments; a surface would be approximated by a union of triangles, whose edges are straight line segments ...
By Stokes' theorem, the flux of curl or vorticity vectors through a surface S is equal to the circulation around its perimeter, [4] = = = Here, the closed integration path ∂S is the boundary or perimeter of an open surface S , whose infinitesimal element normal d S = n dS is oriented according to the right-hand rule .
Stokes boundary layer due to the sinusoidal oscillation of the far-field flow velocity. The horizontal velocity is the blue line, and the corresponding horizontal particle excursions are the red dots.
One way to write down a regular n-simplex in R n is to choose two points to be the first two vertices, choose a third point to make an equilateral triangle, choose a fourth point to make a regular tetrahedron, and so on. Each step requires satisfying equations that ensure that each newly chosen vertex, together with the previously chosen ...
Two vertices connected by a straight line become an edge. Three vertices, connected to each other by three edges, define a triangle , which is the simplest polygon in Euclidean space . More complex polygons can be created out of multiple triangles, or as a single object with more than 3 vertices.
Desargues's theorem in geometry states that these two conditions are equivalent: if two triangles are in perspective centrally then they must also be in perspective axially, and vice versa. When this happens, the ten points and ten lines of the two perspectivities (the six triangle vertices, three crossing points, and center of perspectivity ...