Search results
Results from the WOW.Com Content Network
Gap junctions are membrane channels between ... position of body organs appears to rely on gap junctions, ... no certainty as to what is unique about the composition ...
Gap junctions play vital roles in the human body, [11] including their role in the uniform contractile of the heart muscle. [11] They are also relevant in signal transfers in the brain, and their absence shows a decreased cell density in the brain. [12] Retinal and skin cells are also dependent on gap junctions in cell differentiation and ...
Gap junctions are the main site of cell-cell signaling or communication that allow small molecules to diffuse between adjacent cells. In vertebrates, gap junctions are composed of transmembrane proteins called connexins. They form hexagonal pores or channels through which ions, sugars, and other small molecules can pass.
Each gap junction (sometimes called a nexus) contains numerous gap junction channels that cross the plasma membranes of both cells. [11] With a lumen diameter of about 1.2 to 2.0 nm, [2] [12] the pore of a gap junction channel is wide enough to allow ions and even medium-size molecules like signaling molecules to flow from one cell to the next, [2] [13] thereby connecting the two cells' cytoplasm.
A gap junction modulator is a compound or agent that either facilitates or inhibits the transfer of small molecules between biological cells by regulating gap junctions. [1] Various physiological processes including cardiac , neural or auditory , depend on gap junctions to perform crucial regulatory roles, and the modulators themselves are the ...
Gap junctions are often present at nerve endings such as in cardiac muscle and are important in maintaining homeostasis in the liver and proper function of the kidneys. The gap junction itself is a structure that is a specialized transmembrane protein formed by a connexon hemichannel. [ 8 ]
Connexins are commonly named according to their molecular weights, e.g. Cx26 is the connexin protein of 26 kDa. A competing nomenclature is the gap junction protein system, where connexins are sorted by their α (GJA) and β (GJB) forms, with additional connexins grouped into the C, D and E groupings, followed by an identifying number, e.g. GJA1 corresponds to Cx43.
Gap junctions play an important regulatory role in various physiological processes including signal propagation in cardiac muscles and tissue homeostasis of the liver. Modulation is required, since gap junctions must respond to their environment, whether through an increased expression or permeability.