Search results
Results from the WOW.Com Content Network
In mathematics, specifically in order theory and functional analysis, the order topology of an ordered vector space (,) is the finest locally convex topological vector space (TVS) topology on for which every order interval is bounded, where an order interval in is a set of the form [,]:= {:} where and belong to . [1]
An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):
The left and right order topologies can be used to give counterexamples in general topology. For example, the left or right order topology on a bounded set provides an example of a compact space that is not Hausdorff. The left order topology is the standard topology used for many set-theoretic purposes on a Boolean algebra. [clarification needed]
Functions with compact support on a topological space are those whose closed support is a compact subset of . If X {\displaystyle X} is the real line, or n {\displaystyle n} -dimensional Euclidean space, then a function has compact support if and only if it has bounded support , since a subset of R n {\displaystyle \mathbb {R} ^{n}} is compact ...
The proof is bijective: a matrix A is an adjacency matrix of a DAG if and only if A + I is a (0,1) matrix with all eigenvalues positive, where I denotes the identity matrix. Because a DAG cannot have self-loops , its adjacency matrix must have a zero diagonal, so adding I preserves the property that all matrix coefficients are 0 or 1.
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Topological data analysis and persistent homology have had impacts on Morse theory. [121] Morse theory has played a very important role in the theory of TDA, including on computation. Some work in persistent homology has extended results about Morse functions to tame functions or, even to continuous functions [citation needed]. A forgotten ...
Dually, for a function f from a set S to a topological space X, the initial topology on S has a basis of open sets given by those sets of the form f^(-1)(U) where U is open in X. If S has an existing topology, f is continuous with respect to this topology if and only if the existing topology is finer than the initial topology on S .