Search results
Results from the WOW.Com Content Network
Among all quadrilaterals with a given perimeter, the one with the largest area is the square. This is called the isoperimetric theorem for quadrilaterals. It is a direct consequence of the area inequality [38]: p.114 where K is the area of a convex quadrilateral with perimeter L.
Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.
The ratio between the areas of similar figures is equal to the square of the ratio of corresponding lengths of those figures (for example, when the side of a square or the radius of a circle is multiplied by three, its area is multiplied by nine — i.e. by three squared). The altitudes of similar triangles are in the same ratio as ...
Van Aubel's theorem (quadrilaterals) Van der Waerden's theorem (combinatorics) Van Schooten's theorem (Euclidean geometry) Van Vleck's theorem (mathematical analysis) Vantieghems theorem (number theory) Varignon's theorem (Euclidean geometry) Vieta's formulas ; Vietoris–Begle mapping theorem (algebraic topology) Vinogradov's theorem (number ...
The basic quantities describing a sphere (meaning a 2-sphere, a 2-dimensional surface inside 3-dimensional space) will be denoted by the following variables r {\displaystyle r} is the radius, C = 2 π r {\displaystyle C=2\pi r} is the circumference (the length of any one of its great circles ),
All triangles can have an incircle, but not all quadrilaterals do. An example of a quadrilateral that cannot be tangential is a non-square rectangle . The section characterizations below states what necessary and sufficient conditions a quadrilateral must satisfy to be able to have an incircle.
It can also be derived directly from the trigonometric formula for the area of a tangential quadrilateral. Note that the converse does not hold: Some quadrilaterals that are not bicentric also have area =. [12] One example of such a quadrilateral is a non-square rectangle.
This formula generalizes Heron's formula for the area of a triangle. A triangle may be regarded as a quadrilateral with one side of length zero. From this perspective, as d approaches zero, a cyclic quadrilateral converges into a cyclic triangle (all triangles are cyclic), and Brahmagupta's formula simplifies to Heron's formula.