Ads
related to: size of a graph theory in math examples problems free
Search results
Results from the WOW.Com Content Network
When the degree is less than or equal to 2 or the diameter is less than or equal to 1, the problem becomes trivial, solved by the cycle graph and complete graph respectively. In graph theory, the degree diameter problem is the problem of finding the largest possible graph G (in terms of the size of its vertex set V) of diameter k such that the ...
In graph theory, the degree diameter problem is the problem of finding the largest possible graph for a given maximum degree and diameter.The Moore bound sets limits on this, but for many years mathematicians in the field have been interested in a more precise answer.
In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices (also called nodes or points ) which are connected by edges (also called arcs , links or lines ).
In discrete mathematics, particularly in graph theory, a graph is a structure consisting of a set of objects where some pairs of the objects are in some sense "related". The objects are represented by abstractions called vertices (also called nodes or points ) and each of the related pairs of vertices is called an edge (also called link or line ...
In graph theory, the diameter of a connected undirected graph is the farthest distance between any two of its vertices. That is, it is the diameter of a set for the set of vertices of the graph, and for the shortest-path distance in the graph. Diameter may be considered either for weighted or for unweighted graphs.
In graph theory, the girth of an undirected graph is the length of a shortest cycle contained in the graph. [1] If the graph does not contain any cycles (that is, it is a forest), its girth is defined to be infinity. [2] For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3.
A more general problem is to count spanning trees in an undirected graph, which is addressed by the matrix tree theorem. (Cayley's formula is the special case of spanning trees in a complete graph.) The similar problem of counting all the subtrees regardless of size is #P-complete in the general case (Jerrum (1994)).
An example of a maximum cut. In a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem.
Ads
related to: size of a graph theory in math examples problems free