enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hill sphere - Wikipedia

    en.wikipedia.org/wiki/Hill_sphere

    For such two- or restricted three-body problems as its simplest examples—e.g., one more massive primary astrophysical body, mass of m1, and a less massive secondary body, mass of m2—the concept of a Hill radius or sphere is of the approximate limit to the secondary mass's "gravitational dominance", [6] a limit defined by "the extent" of its ...

  3. Sphere of influence (astrodynamics) - Wikipedia

    en.wikipedia.org/wiki/Sphere_of_influence_(astro...

    The most common base models to calculate the sphere of influence is the Hill sphere and the Laplace sphere, but updated and particularly more dynamic ones have been described. [ 2 ] [ 3 ] The general equation describing the radius of the sphere r SOI {\displaystyle r_{\text{SOI}}} of a planet: [ 4 ] r SOI ≈ a ( m M ) 2 / 5 {\displaystyle r ...

  4. Orbit equation - Wikipedia

    en.wikipedia.org/wiki/Orbit_equation

    In astrodynamics, an orbit equation defines the path of orbiting body around central body relative to , without specifying position as a function of time.Under standard assumptions, a body moving under the influence of a force, directed to a central body, with a magnitude inversely proportional to the square of the distance (such as gravity), has an orbit that is a conic section (i.e. circular ...

  5. Roche limit - Wikipedia

    en.wikipedia.org/wiki/Roche_limit

    In celestial mechanics, the Roche limit, also called Roche radius, is the distance from a celestial body within which a second celestial body, held together only by its own force of gravity, will disintegrate because the first body's tidal forces exceed the second body's self-gravitation. [1]

  6. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    When calculating the length of a short north-south line at the equator, the circle that best approximates that line has a radius of (which equals the meridian's semi-latus rectum), or 6335.439 km, while the spheroid at the poles is best approximated by a sphere of radius , or 6399.594 km, a 1% difference. So long as a spherical Earth is assumed ...

  7. Cytherocentric orbit - Wikipedia

    en.wikipedia.org/wiki/Cytherocentric_orbit

    The hill sphere of a celestial body describes the region in which the gravity of that body is dominant. The hill sphere radius of Venus is about 1 million kilometers; and as the cytherostationary orbital distance lies outside of it, no stable cytherostationary satellite can exist.

  8. Talk:Hill sphere - Wikipedia

    en.wikipedia.org/wiki/Talk:Hill_sphere

    This article also states that it appears that stable satellite orbits exist only inside 1/2 to 1/3 of the Hill radius. The other article on the SoI gives a radius value of 925,000 km, which is about 575,000 miles, or about 62% of the radius of the Hill sphere. So: Hill radius = 1,500,000 km or 932,000 miles; SoI radius = 925,000 km or 575,000 miles

  9. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    For example, one sphere that is described in Cartesian coordinates with the equation x 2 + y 2 + z 2 = c 2 can be described in spherical coordinates by the simple equation r = c. (In this system—shown here in the mathematics convention—the sphere is adapted as a unit sphere, where the radius is set to unity and then can generally be ignored ...