Search results
Results from the WOW.Com Content Network
Coleoid cephalopods (including octopuses, squids and cuttlefish) have complex multicellular organs that they use to change colour rapidly, producing a wide variety of bright colours and patterns. Each chromatophore unit is composed of a single chromatophore cell and numerous muscle, nerve, glial , and sheath cells. [ 43 ]
Morphological change is the result of a change in the density of pigment containing cells and tends to change over longer periods of time. Physiological change, the kind observed in cephalopod lineages, is typically the result of the movement of pigment within the chromatophore, changing where different pigments are localized within the cell.
Reflectin proteins are likely distributed in the outer layer of cells called "sheath cells" that surround an organism's pigment cells also known as chromatocyte. [2] Specific sequences of reflectin ables cephalopods to communicate and camouflage by adjusting color and reflectivity.
Cuttlefish change color and pattern (including the polarization of the reflected light waves), and the shape of the skin to communicate to other cuttlefish, to camouflage themselves, and as a deimatic display to warn off potential predators. Under some circumstances, cuttlefish can be trained to change color in response to stimuli, thereby ...
Diagram of a cephalopod's photophore, in vertical section. A photophore is a glandular organ that appears as luminous spots on marine animals, including fish and cephalopods. The organ can be simple, or as complex as the human eye, equipped with lenses, shutters, color filters, and reflectors; unlike an eye, however, it is optimized to produce ...
Many cephalopods including octopuses, cuttlefish, and squids, and some terrestrial amphibians and reptiles including chameleons and anoles can rapidly change color and pattern, though the major reasons for this include signaling, not only camouflage. [7] [4] Cephalopod active camouflage has stimulated military research in the United States. [8]
The eye color is determined by the ommochromes. Ommochromes are also found in the chromatophores of cephalopods, and in spiders. [1] Ommochromes are metabolites of tryptophan, via kynurenine and 3-hydroxykynurenine. They are responsible for a wide variety of colors, ranging from yellow over red and brown to black.
Fish and frog melanophores are cells that can change colour by dispersing or aggregating pigment-containing bodies. Chromatophores are special pigment-containing cells that may change their size, but more often retain their original size but allow the pigment within them to become redistributed, thus varying the colour and pattern of the animal.