Search results
Results from the WOW.Com Content Network
cqn [35] is a normalization tool for RNA-Seq data, implementing the conditional quantile normalization method. EDASeq [36] is a Bioconductor package to perform GC-Content Normalization for RNA-Seq Data. GeneScissors A comprehensive approach to detecting and correcting spurious transcriptome inference due to RNAseq reads misalignment.
A list of more than 100 different single cell sequencing (omics) methods have been published. [1] The large majority of methods are paired with short-read sequencing technologies, although some of them are compatible with long read sequencing.
Strand-seq overcomes limitations of methods based on whole genome amplification for genetic variant calling: Since Strand-seq does not require reads (or read pairs) transversing the boundaries (or breakpoints) of CNVs or copy-balanced structural variant classes, it is less susceptible to common artefacts of single-cell methods based on whole ...
This difference results in strong batch effects that may bias the findings of statistical methods applied across batches, particularly in the presence of confounding. [30] As a result of the aforementioned properties of single-cell transcriptomic data, batch correction methods developed for bulk sequencing data were observed to perform poorly.
A small conditional RNA (scRNA) is a small RNA molecule or complex (typically less than approximately 100 nt) engineered to interact and change conformation conditionally in response to cognate molecular inputs so as to perform signal transduction in vitro, in situ, or in vivo.
Summary of RNA-Seq. Within the organism, genes are transcribed and (in an eukaryotic organism) spliced to produce mature mRNA transcripts (red). The mRNA is extracted from the organism, fragmented and copied into stable ds-cDNA (blue). The ds-cDNA is sequenced using high-throughput, short-read sequencing methods.
By minimizing these systematic variations, true biological differences can be found. To determine whether normalization is needed, one can plot Cy5 (R) intensities against Cy3 (G) intensities and see whether the slope of the line is around 1. An improved method, which is basically a scaled, 45 degree rotation of the R vs. G plot is an MA-plot. [4]
These methods represented an important step forward in sequence assembly, as they both use algorithms to reach a global optimum instead of a local optimum. While both of these methods made progress towards better assemblies, the De Bruijn graph method has become the most popular in the age of next-generation sequencing.