Search results
Results from the WOW.Com Content Network
Alpha particles, also called alpha rays or alpha radiation, consist of two protons and two neutrons bound together into a particle identical to a helium-4 nucleus. [5] They are generally produced in the process of alpha decay but may also be produced in other ways. Alpha particles are named after the first letter in the Greek alphabet, α.
The following are among the principal radioactive materials known to emit alpha particles. 209 Bi , 211 Bi , 212 Bi , 213 Bi 210 Po , 211 Po , 212 Po , 214 Po , 215 Po , 216 Po , 218 Po
A gram of carbon containing 1 atom of carbon-14 per 10 12 atoms, emits ~0.2 [7] beta (β) particles per second. The primary natural source of carbon-14 on Earth is cosmic ray action on nitrogen in the atmosphere, and it is therefore a cosmogenic nuclide. However, open-air nuclear testing between 1955 and 1980 contributed to this pool.
For example, carbon-14, a radioactive nuclide with a half-life of only 5700(30) years, [27] is constantly produced in Earth's upper atmosphere due to interactions between cosmic rays and nitrogen. Nuclides that are produced by radioactive decay are called radiogenic nuclides , whether they themselves are stable or not.
Alpha radiation is dangerous when alpha-emitting radioisotopes are inhaled or ingested (breathed or swallowed). This brings the radioisotope close enough to sensitive live tissue for the alpha radiation to damage cells. Per unit of energy, alpha particles are at least 20 times more effective at cell-damage than gamma rays and X-rays.
There are three naturally occurring isotopes of carbon: 12, 13, and 14. 12 C and 13 C are stable, occurring in a natural proportion of approximately 93:1. 14 C is produced by thermal neutrons from cosmic radiation in the upper atmosphere, and is transported down to earth to be absorbed by living biological material. Isotopically, 14 C
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or "decays" into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two.
Carbon was not made in the Big Bang, but was produced later in larger stars via the triple-alpha process. The subsequent nucleosynthesis of heavier elements (Z ≥ 6, carbon and heavier elements) requires the extreme temperatures and pressures found within stars and supernovae. These processes began as hydrogen and helium from the Big Bang ...