Search results
Results from the WOW.Com Content Network
The t-test p-value for the difference in means, and the regression p-value for the slope, are both 0.00805. The methods give identical results. This example shows that, for the special case of a simple linear regression where there is a single x-variable that has values 0 and 1, the t-test gives the same results as the linear regression. The ...
A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for comparing two independent samples would not be appropriate). That applies in a within-subjects study design, i.e., in a study where the same set of subjects undergo both of the conditions being compared.
For two matched samples, it is a paired difference test like the paired Student's t-test (also known as the "t-test for matched pairs" or "t-test for dependent samples"). The Wilcoxon test is a good alternative to the t-test when the normal distribution of the differences between paired individuals cannot be assumed. Instead, it assumes a ...
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
Unpaired samples are also called independent samples. Paired samples are also called dependent. Finally, there are some statistical tests that perform analysis of relationship between multiple variables like regression .
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
Independent np < 5 fisher exact test or Barnard's test: np ≥ 5 chi-squared test: Paired McNemar or Kappa 3 or more groups Independent np < 5 collapse categories for chi-squared test: np ≥ 5 chi-squared test: Dependent Cochran's Q
The Šidák correction is derived by assuming that the individual tests are independent. Let the significance threshold for each test be α 1 {\displaystyle \alpha _{1}} ; then the probability that at least one of the tests is significant under this threshold is (1 - the probability that none of them are significant).