Search results
Results from the WOW.Com Content Network
The concept of Archimedes' principle is that an object immersed in a fluid is buoyed up by a force equal to the weight of the fluid displaced by the object. [2] The weight of the displaced fluid can be found mathematically. The mass of the displaced fluid can be expressed in terms of the density and its volume, m = ρV.
Suppose a rock's weight is measured as 10 newtons when suspended by a string in a vacuum with gravity acting on it. Suppose that, when the rock is lowered into the water, it displaces water of weight 3 newtons. The force it then exerts on the string from which it hangs would be 10 newtons minus the 3 newtons of buoyant force: 10 − 3 = 7 newtons.
"The majority of the adult body is water, up to 60% of your weight," says Schnoll-Sussman, adding that the average person's weight can fluctuate one to five pounds per day due to water.
In his research, Archimedes discovered that an object is buoyed up by a force equal to the weight of the water displaced by the object. In other words, an inflatable boat that displaces 100 pounds (45 kilograms) of water is supported by the same amount of force. An object that floats in a fluid is known as being positively buoyant.
Bernoulli's principle is a key concept in fluid dynamics that relates pressure, density, speed and height. Bernoulli's principle states that an increase in the speed of a parcel of fluid occurs simultaneously with a decrease in either the pressure or the height above a datum. [1]:
The surprising answer is 50 kg. In Quine's classification of paradoxes, the potato paradox is a veridical paradox. A visualization where blue boxes represent kg of water and the orange boxes represent kg of solid potato matter. Left, prior to dehydration: 1 kg matter, 99 kg water (99% water). Middle: 1 kg matter, 49 kg water (98% water).
(The Center Square) – A majority of Americans support President-elect Donald Trump's plan to declare a national emergency over the border crisis, according to a new poll.
To calculate the weight of the displaced water, it is necessary to know its density. Seawater (1,025 kg/m 3) is more dense than fresh water (1,000 kg/m 3); [5] so a ship will ride higher in salt water than in fresh. The density of water also varies with temperature.