enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Archimedean property - Wikipedia

    en.wikipedia.org/wiki/Archimedean_property

    The field of the rational numbers can be assigned one of a number of absolute value functions, including the trivial function | | =, when , the more usual | | =, and the -adic absolute value functions. By Ostrowski's theorem, every non-trivial absolute value on the rational numbers is equivalent to either the usual absolute value or some -adic ...

  3. Absolutely and completely monotonic functions and sequences

    en.wikipedia.org/wiki/Absolutely_and_completely...

    [4] [5] Another related concept is that of a completely/absolutely monotonic sequence. This notion was introduced by Hausdorff in 1921. This notion was introduced by Hausdorff in 1921. The notions of completely and absolutely monotone function/sequence play an important role in several areas of mathematics.

  4. Absolute value (algebra) - Wikipedia

    en.wikipedia.org/wiki/Absolute_value_(algebra)

    The standard absolute value on the integers. The standard absolute value on the complex numbers.; The p-adic absolute value on the rational numbers.; If R is the field of rational functions over a field F and () is a fixed irreducible polynomial over F, then the following defines an absolute value on R: for () in R define | | to be , where () = () and ((), ()) = = ((), ()).

  5. Absolute value - Wikipedia

    en.wikipedia.org/wiki/Absolute_value

    The real absolute value function is an example of a continuous function that achieves a global minimum where the derivative does not exist. The subdifferential of | x | at x = 0 is the interval [−1, 1]. [14] The complex absolute value function is continuous everywhere but complex differentiable nowhere because it violates the Cauchy–Riemann ...

  6. Ostrowski's theorem - Wikipedia

    en.wikipedia.org/wiki/Ostrowski's_theorem

    In number theory, Ostrowski's theorem, due to Alexander Ostrowski (1916), states that every non-trivial absolute value on the rational numbers is equivalent to either the usual real absolute value or a p-adic absolute value.

  7. Completeness of the real numbers - Wikipedia

    en.wikipedia.org/wiki/Completeness_of_the_real...

    The monotone convergence theorem (described as the fundamental axiom of analysis by Körner [1]) states that every nondecreasing, bounded sequence of real numbers converges. This can be viewed as a special case of the least upper bound property, but it can also be used fairly directly to prove the Cauchy completeness of the real numbers.

  8. List of mathematical functions - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_functions

    Algebraic functions are functions that can be expressed as the solution of a polynomial equation with integer coefficients.. Polynomials: Can be generated solely by addition, multiplication, and raising to the power of a positive integer.

  9. Root test - Wikipedia

    en.wikipedia.org/wiki/Root_test

    In mathematics, the root test is a criterion for the convergence (a convergence test) of an infinite series.It depends on the quantity | |, where are the terms of the series, and states that the series converges absolutely if this quantity is less than one, but diverges if it is greater than one.