enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The orbital wave functions are positive in the red regions and negative in the blue. The right column shows virtual MO's which are empty in the ground state, but may be occupied in excited states. In chemistry, a molecular orbital (/ ɒr b ə d l /) is a mathematical function describing the location and wave-like behavior of an electron in a ...

  3. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    A diatomic molecular orbital diagram is used to understand the bonding of a diatomic molecule. MO diagrams can be used to deduce magnetic properties of a molecule and how they change with ionization. They also give insight to the bond order of the molecule, how many bonds are shared between the two atoms.

  4. Atomic orbital - Wikipedia

    en.wikipedia.org/wiki/Atomic_orbital

    In quantum mechanics, an atomic orbital (/ ˈɔːrbɪtəl /) is a function describing the location and wave-like behavior of an electron in an atom. [1] This function describes an electron's charge distribution around the atom's nucleus, and can be used to calculate the probability of finding an electron in a specific region around the nucleus.

  5. HOMO and LUMO - Wikipedia

    en.wikipedia.org/wiki/HOMO_and_LUMO

    3D model of the lowest unoccupied molecular orbital in CO 2. In chemistry, HOMO and LUMO are types of molecular orbitals. The acronyms stand for highest occupied molecular orbital and lowest unoccupied molecular orbital, respectively. HOMO and LUMO are sometimes collectively called the frontier orbitals, such as in the frontier molecular ...

  6. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    In chemistry, molecular orbital theory (MO theory or MOT) is a method for describing the electronic structure of molecules using quantum mechanics. It was proposed early in the 20th century. The MOT explains the paramagnetic nature of O 2, which VSEPR theory cannot explain. In molecular orbital theory, electrons in a molecule are not assigned ...

  7. Core electron - Wikipedia

    en.wikipedia.org/wiki/Core_electron

    Core electron. Core electrons are the electrons in an atom that are not valence electrons and do not participate in chemical bonding. [1] The nucleus and the core electrons of an atom form the atomic core. Core electrons are tightly bound to the nucleus. Therefore, unlike valence electrons, core electrons play a secondary role in chemical ...

  8. Hückel method - Wikipedia

    en.wikipedia.org/wiki/Hückel_method

    The method predicts how many energy levels exist for a given molecule, which levels are degenerate and it expresses the molecular orbital energies in terms of two parameters, called α, the energy of an electron in a 2p orbital, and β, the interaction energy between two 2p orbitals (the extent to which an electron is stabilized by allowing it ...

  9. Multiplicity (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(chemistry)

    The multiplicity is often equal to the number of possible orientations of the total spin [3] relative to the total orbital angular momentum L, and therefore to the number of near– degenerate levels that differ only in their spin–orbit interaction energy. For example, the ground state of a carbon atom is 3 P (Term symbol).