enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .

  3. Phase response curve - Wikipedia

    en.wikipedia.org/wiki/Phase_response_curve

    A phase response curve (PRC) illustrates the transient change (phase response) in the cycle period of an oscillation induced by a perturbation as a function of the phase at which it is received. PRCs are used in various fields; examples of biological oscillations are the heartbeat, circadian rhythms , and the regular, repetitive firing observed ...

  4. Frequency response - Wikipedia

    en.wikipedia.org/wiki/Frequency_response

    Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...

  5. Finite impulse response - Wikipedia

    en.wikipedia.org/wiki/Finite_impulse_response

    The magnitude and phase components of () are plotted in the figure. But plots like these can also be generated by doing a discrete Fourier transform (DFT) of the impulse response. [B] And because of symmetry, filter design or viewing software often displays only the [0, π] region.

  6. Minimum phase - Wikipedia

    en.wikipedia.org/wiki/Minimum_phase

    A minimum-phase system, whether discrete-time or continuous-time, has an additional useful property that the natural logarithm of the magnitude of the frequency response (the "gain" measured in nepers, which is proportional to dB) is related to the phase angle of the frequency response (measured in radians) by the Hilbert transform.

  7. Phase margin - Wikipedia

    en.wikipedia.org/wiki/Phase_margin

    Phase margin and gain margin are two measures of stability for a feedback control system. They indicate how much the gain or the phase of the system can vary before it becomes unstable. Phase margin is the difference (expressed as a positive number) between 180° and the phase shift where the magnitude of the loop transfer function is 0 dB.

  8. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    A complex valued frequency-domain representation consists of both the magnitude and the phase of a set of sinusoids (or other basis waveforms) at the frequency components of the signal. Although it is common to refer to the magnitude portion (the real valued frequency-domain) as the frequency response of a signal, the phase portion is required ...

  9. Phase response - Wikipedia

    en.wikipedia.org/wiki/Phase_response

    The amplitude response is the ratio of output amplitude to input, usually a function of the frequency. Similarly, phase response is the phase of the output with the input as reference. The input is defined as zero phase. A phase response is not limited to lying between 0° and 360°, as phase can accumulate to any amount of time.