Search results
Results from the WOW.Com Content Network
In digital signal processing, convolution is used to map the impulse response of a real room on a digital audio signal. In electronic music convolution is the imposition of a spectral or rhythmic structure on a sound. Often this envelope or structure is taken from another sound. The convolution of two signals is the filtering of one through the ...
That is the convolution integral and is used to find the convolution of a signal and a system; typically a = -∞ and b = +∞. Consider two waveforms f and g. By calculating the convolution, we determine how much a reversed function g must be shifted along the x-axis to become identical to function f.
Similar to the one-dimensional convolution, the multidimensional convolution allows the computation of the output of an LSI system for a given input signal. For example, consider an image that is sent over some wireless network subject to electro-optical noise.
[12] [13] [clarification needed] After calculating the cross-correlation between the two signals, the maximum (or minimum if the signals are negatively correlated) of the cross-correlation function indicates the point in time where the signals are best aligned; i.e., the time delay between the two signals is determined by the argument of the ...
Note that, although the example demonstrated above is a 2-D convolution, a similar approach can be adopted for a higher dimension system. Overall, for a s-D convolution, a GPGPU implementation has time complexity Θ(n s), whereas a CPU implementation has time complexity Θ(n 2s). M-D convolution equation:
Nonlinear signal processing involves the analysis and processing of signals produced from nonlinear systems and can be in the time, frequency, or spatiotemporal domains. [8] [9] Nonlinear systems can produce highly complex behaviors including bifurcations, chaos, harmonics, and subharmonics which cannot be produced or analyzed using linear methods.
where x is an input sequence, y j is a sequence from output j, h j is an impulse response for output j and denotes convolution. A convolutional encoder is a discrete linear time-invariant system. Every output of an encoder can be described by its own transfer function, which is closely related to the generator polynomial.
In mathematics, the convolution theorem states that under suitable conditions the Fourier transform of a convolution of two functions (or signals) is the product of their Fourier transforms. More generally, convolution in one domain (e.g., time domain) equals point-wise multiplication in the other domain (e.g., frequency domain).