enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of wax figures displayed at Madame Tussauds museums

    en.wikipedia.org/wiki/List_of_wax_figures...

    A waxwork of Madame Tussaud herself. The following is a list of wax figures which are currently displayed or have been displayed at one of the Madame Tussauds museums.

  3. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    Johannes Kepler in Harmonices Mundi (1618) named this polyhedron a rhombicosidodecahedron, being short for truncated icosidodecahedral rhombus, with icosidodecahedral rhombus being his name for a rhombic triacontahedron.

  4. Rhombille tiling - Wikipedia

    en.wikipedia.org/wiki/Rhombille_tiling

    When more than one type of rhombus is allowed, additional tilings are possible, including some that are topologically equivalent to the rhombille tiling but with lower symmetry. Tilings combinatorially equivalent to the rhombille tiling can also be realized by parallelograms, and interpreted as axonometric projections of three dimensional cubic ...

  5. Rhombic triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_triacontahedron

    Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± ⁠ 1 / φ ⁠) and cyclic permutations of these coordinates.

  6. Semiregular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Semiregular_polyhedron

    He also considered a rhombus as a semiregular polygon (being equilateral and alternating two angles) as well as star polygons, now called isotoxal figures which he used in planar tilings. The trigonal trapezohedron, a topological cube with congruent rhombic faces, would also qualify as semiregular, though Kepler did not mention it specifically.

  7. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    rhombus In Euclidean plane geometry , a rectangle is a rectilinear convex polygon or a quadrilateral with four right angles . It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containing a right angle.

  8. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals. It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite ...

  9. Rhombohedron - Wikipedia

    en.wikipedia.org/wiki/Rhombohedron

    In geometry, a rhombohedron (also called a rhombic hexahedron [1] [2] or, inaccurately, a rhomboid [a]) is a special case of a parallelepiped in which all six faces are congruent rhombi. [3]