Search results
Results from the WOW.Com Content Network
The formula for change (or "the change formula") provides a model to assess the relative strengths affecting the likely success of organisational change programs. The formula was created by David Gleicher while he was working at management consultants Arthur D. Little in the early 1960s, [1] refined by Kathie Dannemiller in the 1980s, [2] and further developed by Steve Cady.
In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...
The rule can then be derived [2] either from the Poisson approximation to the binomial distribution, or from the formula (1−p) n for the probability of zero events in the binomial distribution. In the latter case, the edge of the confidence interval is given by Pr( X = 0) = 0.05 and hence (1− p ) n = .05 so n ln (1– p ) = ln .05 ≈ −2.996.
A 3 × 3 experiment: Here we expect 3-1 = 2 degrees of freedom each for the main effects of factors A and B, and (3-1)(3-1) = 4 degrees of freedom for the A × B interaction. This accounts for the number of columns for each effect in the accompanying table. The two contrast vectors for A depend only on the level of factor A.
In an economic model, an exogenous variable is one whose measure is determined outside the model and is imposed on the model, and an exogenous change is a change in an exogenous variable. [1]: p. 8 [2]: p. 202 [3]: p. 8 In contrast, an endogenous variable is a variable whose measure is determined by the model. An endogenous change is a change ...
3 = factor 3 12 = interaction of factor 1 and factor 2 13 = interaction of factor 1 and factor 3 23 = interaction of factor 2 and factor 3 123 = interaction of factors 1, 2, and 3. A ranked list of important factors. That is, least squares estimated factor effects ordered from largest in magnitude (most significant) to smallest in magnitude ...
The change is independent of the initial size of those quantities. For instance, the area of a square has a power law relationship with the length of its side, since if the length is doubled, the area is multiplied by 2 2, while if the length is tripled, the area is multiplied by 3 2, and so on. [1]
Interaction effect of education and ideology on concern about sea level rise. In statistics, an interaction may arise when considering the relationship among three or more variables, and describes a situation in which the effect of one causal variable on an outcome depends on the state of a second causal variable (that is, when effects of the two causes are not additive).