Search results
Results from the WOW.Com Content Network
In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface =
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]
In vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl.
A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...
A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .
The orthogonal projection of this vector onto T c(t) S defines the covariant derivative ∇ c ′(t) X. Although this is a very geometrically clean definition, it is necessary to show that the result only depends on c ′( t ) and X , and not on c and X ; local parametrizations can be used for this small technical argument.
(If the affine connection is torsion-free, then the second fundamental form is symmetric.) The sign of the second fundamental form depends on the choice of direction of n (which is called a co-orientation of the hypersurface - for surfaces in Euclidean space, this is equivalently given by a choice of orientation of the surface).
The Gauss map can be defined for hypersurfaces in R n as a map from a hypersurface to the unit sphere S n − 1 ⊆ R n. For a general oriented k-submanifold of R n the Gauss map can also be defined, and its target space is the oriented Grassmannian ~,, i.e. the set of all oriented k-planes in R n. In this case a point on the submanifold is ...