enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hypersurface - Wikipedia

    en.wikipedia.org/wiki/Hypersurface

    In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]

  3. Complex lamellar vector field - Wikipedia

    en.wikipedia.org/wiki/Complex_lamellar_vector_field

    In vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl.

  4. Quadric (algebraic geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadric_(algebraic_geometry)

    In mathematics, a quadric or quadric hypersurface is the subspace of N-dimensional space defined by a polynomial equation of degree 2 over a field. Quadrics are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather than affine space. An example is the quadric surface =

  5. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  6. Projection (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Projection_(linear_algebra)

    A square matrix is called a projection matrix if it is equal to its square, i.e. if =. [2]: p. 38 A square matrix is called an orthogonal projection matrix if = = for a real matrix, and respectively = = for a complex matrix, where denotes the transpose of and denotes the adjoint or Hermitian transpose of .

  7. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    A conformal map acting on a rectangular grid. Note that the orthogonality of the curved grid is retained. While vector operations and physical laws are normally easiest to derive in Cartesian coordinates, non-Cartesian orthogonal coordinates are often used instead for the solution of various problems, especially boundary value problems, such as those arising in field theories of quantum ...

  8. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The key is that when one regards X 1 ⁠ ∂f / ∂u ⁠ + X 2 ⁠ ∂f / ∂v ⁠ as a ℝ 3-valued function, its differentiation along a curve results in second partial derivatives ∂ 2 f; the Christoffel symbols enter with orthogonal projection to the tangent space, due to the formulation of the Christoffel symbols as the tangential ...

  9. Gauss map - Wikipedia

    en.wikipedia.org/wiki/Gauss_Map

    The Gauss map can be defined for hypersurfaces in R n as a map from a hypersurface to the unit sphere S n − 1 ⊆ R n. For a general oriented k-submanifold of R n the Gauss map can also be defined, and its target space is the oriented Grassmannian ~,, i.e. the set of all oriented k-planes in R n. In this case a point on the submanifold is ...