enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Frank–Wolfe algorithm - Wikipedia

    en.wikipedia.org/wiki/Frank–Wolfe_algorithm

    A step of the Frank–Wolfe algorithm Initialization: Let , and let be any point in . Step 1. Direction-finding subproblem: Find solving Minimize () Subject to (Interpretation: Minimize the linear approximation of the problem given by the first-order Taylor approximation of around constrained to stay within .)

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...

  4. Solid Converter PDF - Wikipedia

    en.wikipedia.org/wiki/Solid_Converter_PDF

    Solid Converter PDF is document reconstruction software from Solid Documents which converts PDF files to editable formats. Originally released for the Microsoft Windows operating system, a Mac OS X version was released in 2010. The current versions are Solid Converter PDF 9.0 for Windows and Solid PDF to Word for Mac 2.1.

  5. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    For very simple problems, say a function of two variables subject to a single equality constraint, it is most practical to apply the method of substitution. [4] The idea is to substitute the constraint into the objective function to create a composite function that incorporates the effect of the

  6. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables. Quadratic programming is a type of nonlinear programming. "Programming" in this context refers to a formal procedure for solving mathematical problems.

  7. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    The Big M method introduces surplus and artificial variables to convert all inequalities into that form. The "Big M" refers to a large number associated with the artificial variables, represented by the letter M. The steps in the algorithm are as follows: Multiply the inequality constraints to ensure that the right hand side is positive.

  8. Ellipsoid method - Wikipedia

    en.wikipedia.org/wiki/Ellipsoid_method

    Consider a family of convex optimization problems of the form: minimize f(x) s.t. x is in G, where f is a convex function and G is a convex set (a subset of an Euclidean space R n). Each problem p in the family is represented by a data-vector Data( p ), e.g., the real-valued coefficients in matrices and vectors representing the function f and ...

  9. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    g i (x) ≤ 0 are called inequality constraints; h j (x) = 0 are called equality constraints, and; m ≥ 0 and p ≥ 0. If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization problem. A maximization problem can be treated by negating the objective function.