Search results
Results from the WOW.Com Content Network
For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3. ... 12 2 = 144 13 2 = 169 14 2 = 196 15 2 = 225 16 2 = 256 17 2 = 289 18 2 = 324 ...
However, the square of the distance (denoted d 2 or r 2), which has a paraboloid as its graph, is a smooth and analytic function. The dot product of a Euclidean vector with itself is equal to the square of its length: v⋅v = v 2. This is further generalised to quadratic forms in linear spaces via the inner product.
The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written in mathematics as 2 {\displaystyle {\sqrt {2}}} or 2 1 / 2 {\displaystyle 2^{1/2}} .
All four sides of a square are equal. Opposite sides of a square are parallel. A square has Schläfli symbol {4}. A truncated square, t{4}, is an octagon, {8}. An alternated square, h{4}, is a digon, {2}. The square is the n = 2 case of the families of n-hypercubes and n-orthoplexes.
Ratio of a circle's circumference to its radius. Equal to : 1900 to 1600 BCE [2] Square root of 2, Pythagoras constant [4] 1.41421 35623 73095 04880 [Mw 2] [OEIS 3] Positive root of = 1800 to 1600 BCE [5] Square root of 3, Theodorus' constant [6]
Another geometric proof proceeds as follows: We start with the figure shown in the first diagram below, a large square with a smaller square removed from it. The side of the entire square is a, and the side of the small removed square is b. The area of the shaded region is . A cut is made, splitting the region into two rectangular pieces, as ...
One octave of 12-tet on a monochord (linear) The chromatic circle depicts equal distances between notes (logarithmic) Since the frequency ratio of a semitone is close to 106% ( 100 2 12 ≈ 105.946 {\textstyle 100{\sqrt[{12}]{2}}\approx 105.946} ), increasing or decreasing the playback speed of a recording by 6% will shift the pitch up or down ...
The square root of 2 is equal to the length of the hypotenuse of a right triangle with legs of length 1 and is therefore a constructible number. In geometry and algebra, a real number is constructible if and only if, given a line segment of unit length, a line segment of length | | can be constructed with compass and straightedge in a finite number of steps.