Search results
Results from the WOW.Com Content Network
The duplication formula and the multiplication theorem for the gamma function are the prototypical examples. The duplication formula for the gamma function is (+) = ().It is also called the Legendre duplication formula [1] or Legendre relation, in honor of Adrien-Marie Legendre.
Perhaps the best-known value of the gamma function at a non-integer argument is =, which can be found by setting = in the reflection or duplication formulas, by using the relation to the beta function given below with = =, or simply by making the substitution = in the integral definition of the gamma function, resulting in a Gaussian integral.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
Duplication, or doubling, multiplication by 2; Duplication matrix, a linear transformation dealing with half-vectorization; Doubling the cube, a problem in geometry also known as duplication of the cube; A type of multiplication theorem called the Legendre duplication formula or simply "duplication formula"
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2] The subject is based upon a three-dimensional Euclidean space with
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The sign of the metric and the placement of the ct, ct', cdt, and cdt′ time-based terms can vary depending on the author's choice. For instance, many times the time-based terms are placed first in the four-vectors, with the spatial terms following.
More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...