Search results
Results from the WOW.Com Content Network
In mathematics, and especially in algebraic geometry, the intersection number generalizes the intuitive notion of counting the number of times two curves intersect to higher dimensions, multiple (more than 2) curves, and accounting properly for tangency. One needs a definition of intersection number in order to state results like Bézout's theorem
2. Denotes the additive inverse and is read as minus, the negative of, or the opposite of; for example, –2. 3. Also used in place of \ for denoting the set-theoretic complement; see \ in § Set theory. × (multiplication sign) 1. In elementary arithmetic, denotes multiplication, and is read as times; for example, 3 × 2. 2.
As an example, consider the multiplication of 58 with 213. After writing the multiplicands on the sides, consider each cell, beginning with the top left cell. In this case, the column digit is 5 and the row digit is 2. Write their product, 10, in the cell, with the digit 1 above the diagonal and the digit 0 below the diagonal (see picture for ...
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
When multiplication is mentioned in elementary mathematics, it usually refers to this kind of multiplication. From the point of view of algebra, the real numbers form a field, which ensures the validity of the distributive law. First example (mental and written multiplication)
As another example, the number 5 is not contained in the intersection of the set of prime numbers {2, 3, 5, 7, 11, …} and the set of even numbers {2, 4, 6, 8, 10, …} , because although 5 is a prime number, it is not even. In fact, the number 2 is the only number in the intersection of these two sets. In this case, the intersection has ...
The grid method (also known as the box method) of multiplication is an introductory approach to multi-digit multiplication calculations that involve numbers larger than ten. Because it is often taught in mathematics education at the level of primary school or elementary school, this algorithm is sometimes called the grammar school method. [1]
P(A|B) may or may not be equal to P(A), i.e., the unconditional probability or absolute probability of A. If P(A|B) = P(A), then events A and B are said to be independent: in such a case, knowledge about either event does not alter the likelihood of each other. P(A|B) (the conditional probability of A given B) typically differs from P(B|A).