enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Curve fitting - Wikipedia

    en.wikipedia.org/wiki/Curve_fitting

    With low-order polynomials, the curve is more likely to fall near the midpoint (it's even guaranteed to exactly run through the midpoint on a first degree polynomial). Low-order polynomials tend to be smooth and high order polynomial curves tend to be "lumpy". To define this more precisely, the maximum number of inflection points possible in a ...

  3. Runge's phenomenon - Wikipedia

    en.wikipedia.org/wiki/Runge's_phenomenon

    A ninth order polynomial interpolation (exact replication of the red curve at 10 points) In the mathematical field of numerical analysis, Runge's phenomenon (German:) is a problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points.

  4. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    Although polynomial regression is technically a special case of multiple linear regression, the interpretation of a fitted polynomial regression model requires a somewhat different perspective. It is often difficult to interpret the individual coefficients in a polynomial regression fit, since the underlying monomials can be highly correlated.

  5. Extrapolation - Wikipedia

    en.wikipedia.org/wiki/Extrapolation

    Polynomial extrapolation is typically done by means of Lagrange interpolation or using Newton's method of finite differences to create a Newton series that fits the data. The resulting polynomial may be used to extrapolate the data. High-order polynomial extrapolation must be used with due care.

  6. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Polynomial interpolation also forms the basis for algorithms in numerical quadrature (Simpson's rule) and numerical ordinary differential equations (multigrid methods). In computer graphics, polynomials can be used to approximate complicated plane curves given a few specified points, for example the shapes of letters in typography.

  7. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial. For example, the polynomial x 2 y 2 + 3x 3 + 4y has degree 4, the same degree as the term x ...

  8. Local regression - Wikipedia

    en.wikipedia.org/wiki/Local_regression

    Local regression or local polynomial regression, [1] also known as moving regression, [2] is a generalization of the moving average and polynomial regression. [3] Its most common methods, initially developed for scatterplot smoothing, are LOESS (locally estimated scatterplot smoothing) and LOWESS (locally weighted scatterplot smoothing), both pronounced / ˈ l oʊ ɛ s / LOH-ess.

  9. B-spline - Wikipedia

    en.wikipedia.org/wiki/B-spline

    A Bézier curve is also a polynomial curve definable using a recursion from lower-degree curves of the same class and encoded in terms of control points, but a key difference is that all terms in the recursion for a Bézier curve segment have the same domain of definition (usually [,]), whereas the supports of the two terms in the B-spline ...