enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The following is a list of Laplace transforms for many common functions of a single variable. [1] The Laplace transform is an integral transform that takes a function of a positive real variable t (often time) to a function of a complex variable s (complex angular frequency ).

  3. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:

  4. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  5. Integro-differential equation - Wikipedia

    en.wikipedia.org/wiki/Integro-differential_equation

    Consider the following second-order problem, ′ + + = () =, where = {,, <is the Heaviside step function.The Laplace transform is defined by, = {()} = ().Upon taking term-by-term Laplace transforms, and utilising the rules for derivatives and integrals, the integro-differential equation is converted into the following algebraic equation,

  6. Classical control theory - Wikipedia

    en.wikipedia.org/wiki/Classical_control_theory

    The Laplace transform is a frequency-domain approach for continuous time signals irrespective of whether the system is stable or unstable. The Laplace transform of a function f ( t ) , defined for all real numbers t ≥ 0 , is the function F ( s ) , which is a unilateral transform defined by

  7. Partial fraction decomposition - Wikipedia

    en.wikipedia.org/wiki/Partial_fraction_decomposition

    Partial fractions are used in real-variable integral calculus to find real-valued antiderivatives of rational functions. Partial fraction decomposition of real rational functions is also used to find their Inverse Laplace transforms. For applications of partial fraction decomposition over the reals, see Application to symbolic integration, above

  8. Cylindrical harmonics - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_harmonics

    Using the technique of the separation of variables, a separated solution to Laplace's equation can be expressed as: = () and Laplace's equation, divided by V, is written: ¨ + ˙ + ¨ + ¨ = The Z part of the equation is a function of z alone, and must therefore be equal to a constant: Z ¨ Z = k 2 {\displaystyle {\frac {\ddot {Z}}{Z}}=k^{2 ...

  9. Final value theorem - Wikipedia

    en.wikipedia.org/wiki/Final_value_theorem

    1.1.2 Final Value Theorem using Laplace transform of the derivative. ... have applications in establishing the long-term ... must have negative real parts. ...