Search results
Results from the WOW.Com Content Network
High-fidelity data (HiFi) includes data that was produced by a person or Stochastic Process that closely matches the operational context of interest. For example, in wing design optimization, high-fidelity data uses physical models in simulation that produce results that closely match the wing in a similar real-world setting. [5]
Modeling and simulation (M&S) is the use of models (e.g., physical, mathematical, behavioral, or logical representation of a system, entity, phenomenon, or process) as a basis for simulations to develop data utilized for managerial or technical decision making.
Human-in-the-loop simulation of outer space Visualization of a direct numerical simulation model. Historically, simulations used in different fields developed largely independently, but 20th-century studies of systems theory and cybernetics combined with spreading use of computers across all those fields have led to some unification and a more systematic view of the concept.
A live simulation, by definition represents the highest fidelity, since it is reality. But a simulation quickly becomes more difficult when it is created from various live, virtual and constructive elements, or sets of simulations with various network protocols, where each simulation consists of a set of live, virtual and constructive elements.
A validation space ("reality") represents the fine model, for example, a high-fidelity physics model. The optimization space, where conventional optimization is carried out, incorporates the coarse model (or surrogate model), for example, the low-fidelity physics or "knowledge" model. In a space-mapping design optimization phase, there is a ...
A simulation is a way to implement the model, often employed when the model is too complex for the analytical solution. A steady-state simulation provides information about the system at a specific instant in time (usually at equilibrium, if such a state exists). A dynamic simulation provides information over time.
Fidelity is therefore a measure of the realism of a model or simulation. [4] Simulation fidelity has also been described in the past as "degree of similarity". [5] In quantum mechanics and optics, [6] the fidelity of a field is calculated as an overlap integral of the field of interest with a reference or target field.
Simulation modeling is the process of creating and analyzing a digital prototype of a physical model to predict its performance in the real world. Simulation modeling is used to help designers and engineers understand whether, under what conditions, and in which ways a part could fail and what loads it can withstand.