enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tesla (unit) - Wikipedia

    en.wikipedia.org/wiki/Tesla_(unit)

    The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre .

  3. Orders of magnitude (magnetic field) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude.. The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface).

  4. Gauss (unit) - Wikipedia

    en.wikipedia.org/wiki/Gauss_(unit)

    The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted.

  5. Oersted's law - Wikipedia

    en.wikipedia.org/wiki/Oersted's_law

    The magnetic field (marked B, indicated by red field lines) around wire carrying an electric current (marked I) Compass and wire apparatus showing Ørsted's experiment (video [1]) In electromagnetism , Ørsted's law , also spelled Oersted's law , is the physical law stating that an electric current induces a magnetic field .

  6. Oersted - Wikipedia

    en.wikipedia.org/wiki/Oersted

    In the CGS system, the unit of the H-field is the oersted and the unit of the B-field is the gauss. In the SI system, the unit ampere per meter (A/m), which is equivalent to newton per weber, is used for the H-field and the unit of tesla is used for the B-field. [3]

  7. Magnetar - Wikipedia

    en.wikipedia.org/wiki/Magnetar

    A magnetar's 10 10 tesla field, by contrast, has an energy density of 4.0 × 10 25 J/m 3, with an E/c 2 mass density more than 10,000 times that of lead. The magnetic field of a magnetar would be lethal even at a distance of 1,000 km due to the strong magnetic field distorting the electron clouds of the subject's constituent atoms, rendering ...

  8. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    In electromagnetism, Jefimenko's equations (named after Oleg D. Jefimenko) give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay (retarded time) of the fields due to the finite speed of light and relativistic effects.

  9. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    In the differential form formulation on arbitrary space times, F = ⁠ 1 / 2 ⁠ F αβ ‍ dx α ∧ dx β is the electromagnetic tensor considered as a 2-form, A = A α dx α is the potential 1-form, = is the current 3-form, d is the exterior derivative, and is the Hodge star on forms defined (up to its orientation, i.e. its sign) by the ...