Search results
Results from the WOW.Com Content Network
A high-temperature gas-cooled reactor (HTGR) is a type of gas-cooled nuclear reactor which uses uranium fuel and graphite moderation to produce very high reactor core output temperatures. [1] All existing HTGR reactors use helium coolant. The reactor core can be either a "prismatic block" (reminiscent of a conventional reactor core) or a ...
The OPR-1000 is a South Korean-designed two-loop 1000 MWe PWR Generation II nuclear reactor, developed by KHNP and KEPCO. [1] The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. [2]
A current limiting reactor is used when the prospective short-circuit current in a distribution or transmission system is calculated to exceed the interrupting rating of the associated switchgear. The inductive reactance is chosen to be low enough for an acceptable voltage drop during normal operation, but high enough to restrict a short ...
Sketch of a pebble-bed reactor. The pebble-bed reactor (PBR) is a design for a graphite-moderated, gas-cooled nuclear reactor. It is a type of very-high-temperature reactor (VHTR), one of the six classes of nuclear reactors in the Generation IV initiative. Graphite pebble for reactor. The basic design features spherical fuel elements called ...
Sequencing batch reactors ... Idle; First, the inlet valve is opened and the tank is filled, while mixing is provided by mechanical means, but no air is added yet ...
A fluidized bed reactor (FBR) is a type of reactor device that can be used to carry out a variety of multiphase chemical reactions. In this type of reactor, a fluid (gas or liquid) is passed through a solid granular material (usually a catalyst) at high enough speeds to suspend the solid and cause it to behave as though it were a fluid.
Gas-cooled fast reactor scheme. The gas-cooled fast reactor (GFR) system is a nuclear reactor design which is currently in development.Classed as a Generation IV reactor, it features a fast-neutron spectrum and closed fuel cycle for efficient conversion of fertile uranium and management of actinides.
The Indian Pressurized Water Reactor-900 (IPWR-900) is a class of pressurized water reactors being designed by the Bhabha Atomic Research Centre (BARC) in partnership with the Nuclear Power Corporation of India Limited to supplement the Indian three-stage nuclear power programme.