enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor product of modules - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of_modules

    In this setup, for example, one can define a tensor field on a smooth manifold M as a (global or local) section of the tensor product (called tensor bundle) () where O is the sheaf of rings of smooth functions on M and the bundles , are viewed as locally free sheaves on M.

  3. Tor functor - Wikipedia

    en.wikipedia.org/wiki/Tor_functor

    0 (A, B) ≅ A ⊗ R B for any right R-module A and left R-module B. Tor R i (A, B) = 0 for all i > 0 if either A or B is flat (for example, free) as an R-module. In fact, one can compute Tor using a flat resolution of either A or B; this is more general than a projective (or free) resolution. [5] There are converses to the previous statement ...

  4. Derived tensor product - Wikipedia

    en.wikipedia.org/wiki/Derived_tensor_product

    In particular, () is the usual tensor product of modules M and N over R. Geometrically, the derived tensor product corresponds to the intersection product (of derived schemes ). Example : Let R be a simplicial commutative ring , Q ( R ) → R be a cofibrant replacement, and Ω Q ( R ) 1 {\displaystyle \Omega _{Q(R)}^{1}} be the module of ...

  5. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  6. Resolution (algebra) - Wikipedia

    en.wikipedia.org/wiki/Resolution_(algebra)

    In many circumstances conditions are imposed on the modules E i resolving the given module M. For example, a free resolution of a module M is a left resolution in which all the modules E i are free R-modules. Likewise, projective and flat resolutions are left resolutions such that all the E i are projective and flat R-modules, respectively.

  7. Tensor product of algebras - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of_algebras

    Let R be a commutative ring and let A and B be R-algebras.Since A and B may both be regarded as R-modules, their tensor product. is also an R-module.The tensor product can be given the structure of a ring by defining the product on elements of the form a ⊗ b by [1] [2]

  8. Bimodule - Wikipedia

    en.wikipedia.org/wiki/Bimodule

    In this interpretation, the category End(R) = Bimod(R, R) is exactly the monoidal category of R-R-bimodules with the usual tensor product over R the tensor product of the category. In particular, if R is a commutative ring, every left or right R-module is canonically an R-R-bimodule, which gives a monoidal embedding of the category R-Mod into ...

  9. Direct sum of modules - Wikipedia

    en.wikipedia.org/wiki/Direct_sum_of_modules

    The direct sum is a submodule of the direct product of the modules M i (Bourbaki 1989, §II.1.7). The direct product is the set of all functions α from I to the disjoint union of the modules M i with α(i)∈M i, but not necessarily vanishing for all but finitely many i. If the index set I is finite, then the direct sum and the direct product ...