Search results
Results from the WOW.Com Content Network
A complex number can be visually represented as a pair of numbers (a, b) forming a vector on a diagram called an Argand diagram, representing the complex plane. Re is the real axis, Im is the imaginary axis, and i is the "imaginary unit", that satisfies i 2 = −1.
The number of brackets is the number of linear equations associated with an integral. This term reflects the common practice of bracketing each linear equation. [15] The complexity index is the number of integrand sums minus the number of brackets (linear equations). Each series expansion of the integrand contributes one sum.
In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula = (,) =,where (a, q) = 1 means that a only takes on values coprime to q.
In fact, the same proof shows that Euler's formula is even valid for all complex numbers x. A point in the complex plane can be represented by a complex number written in cartesian coordinates. Euler's formula provides a means of conversion between cartesian coordinates and polar coordinates. The polar form simplifies the mathematics when used ...
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
x is the argument of the complex number (angle between line to point and x-axis in polar form). The notation is less commonly used in mathematics than Euler's formula , e ix , which offers an even shorter notation for cos x + i sin x , but cis(x) is widely used as a name for this function in software libraries .
The analogue of Euler's formula for the split-complex numbers is exp ( j θ ) = cosh ( θ ) + j sinh ( θ ) . {\displaystyle \exp(j\theta )=\cosh(\theta )+j\sinh(\theta ).} This formula can be derived from a power series expansion using the fact that cosh has only even powers while that for sinh has odd powers. [ 2 ]
A consequence of the theorem is that "genuinely different" entire functions cannot dominate each other, i.e. if and are entire, and | | | | everywhere, then = for some complex number . Consider that for g = 0 {\displaystyle g=0} the theorem is trivial so we assume g ≠ 0 {\displaystyle g\neq 0} .