enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  3. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    Graeffe's method – Algorithm for finding polynomial roots; Lill's method – Graphical method for the real roots of a polynomial; MPSolve – Software for approximating the roots of a polynomial with arbitrarily high precision; Multiplicity (mathematics) – Number of times an object must be counted for making true a general formula

  4. Tonelli–Shanks algorithm - Wikipedia

    en.wikipedia.org/wiki/Tonelli–Shanks_algorithm

    The Tonelli–Shanks algorithm (referred to by Shanks as the RESSOL algorithm) is used in modular arithmetic to solve for r in a congruence of the form r 2 ≡ n (mod p), where p is a prime: that is, to find a square root of n modulo p.

  5. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    For finding one root, Newton's method and other general iterative methods work generally well. For finding all the roots, arguably the most reliable method is the Francis QR algorithm computing the eigenvalues of the companion matrix corresponding to the polynomial, implemented as the standard method [1] in MATLAB.

  6. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Newton's method is a powerful technique—in general the convergence is quadratic: as the method converges on the root, the difference between the root and the approximation is squared (the number of accurate digits roughly doubles) at each step. However, there are some difficulties with the method.

  7. Kunerth's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kunerth's_algorithm

    The modular square root of can be taken this way. Having solved the associated quadratic equation we now have the variables w and set v = r (if C in the quadratic is a natural square). Solve for variables α {\displaystyle \alpha } and β {\displaystyle \beta } the following equation:

  8. Square-root sum problem - Wikipedia

    en.wikipedia.org/wiki/Square-root_sum_problem

    The main difficulty is that, in order to solve the problem, the square-roots should be computed to a high accuracy, which may require a large number of bits. The problem is mentioned in the Open Problems Garden. [4] Blomer [5] presents a polynomial-time Monte Carlo algorithm for deciding whether a

  9. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    The square root of a positive integer is the product of the roots of its prime factors, because the square root of a product is the product of the square roots of the factors. Since p 2 k = p k , {\textstyle {\sqrt {p^{2k}}}=p^{k},} only roots of those primes having an odd power in the factorization are necessary.