Search results
Results from the WOW.Com Content Network
He used a ramp to study rolling balls, the ramp slowing the acceleration enough to measure the time taken for the ball to roll a known distance. [1] [2] He measured elapsed time with a water clock, using an "extremely accurate balance" to measure the amount of water. [note 1]
Displacement is the shift in location when an object in motion changes from one position to another. [2] For motion over a given interval of time, the displacement divided by the length of the time interval defines the average velocity (a vector), whose magnitude is the average speed (a scalar quantity).
From this derivative equation, in the one-dimensional case it can be seen that the area under a velocity vs. time (v vs. t graph) is the displacement, s. In calculus terms, the integral of the velocity function v(t) is the displacement function s(t). In the figure, this corresponds to the yellow area under the curve.
In statistical mechanics, the mean squared displacement (MSD, also mean square displacement, average squared displacement, or mean square fluctuation) is a measure of the deviation of the position of a particle with respect to a reference position over time.
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
A metric or distance function is a function d which takes pairs of points or objects to real numbers and satisfies the following rules: The distance between an object and itself is always zero. The distance between distinct objects is always positive. Distance is symmetric: the distance from x to y is always the same as the distance from y to x.
These relationships can be demonstrated graphically. The gradient of a line on a displacement time graph represents the velocity. The gradient of the velocity time graph gives the acceleration while the area under the velocity time graph gives the displacement. The area under a graph of acceleration versus time is equal to the change in velocity.
It is the first time-integral of the displacement [3] [4] (i.e. absement is the area under a displacement vs. time graph), so the displacement is the rate of change (first time-derivative) of the absement. The dimension of absement is length multiplied by time.