Search results
Results from the WOW.Com Content Network
The higher the branching factor, the faster this "explosion" occurs. The branching factor can be cut down by a pruning algorithm. The average branching factor can be quickly calculated as the number of non-root nodes (the size of the tree, minus one; or the number of edges) divided by the number of non-leaf nodes (the number of nodes with ...
with a corresponding factor graph shown on the right. Observe that the factor graph has a cycle. If we merge (,) (,) into a single factor, the resulting factor graph will be a tree. This is an important distinction, as message passing algorithms are usually exact for trees, but only approximate for graphs with cycles.
Shanks' square forms factorization is a method for integer factorization devised by Daniel Shanks as an improvement on Fermat's factorization method. The success of Fermat's method depends on finding integers x {\displaystyle x} and y {\displaystyle y} such that x 2 − y 2 = N {\displaystyle x^{2}-y^{2}=N} , where N {\displaystyle N} is the ...
The square-free factorization of a polynomial p is a factorization = where each is either 1 or a polynomial without multiple roots, and two different do not have any common root. An efficient method to compute this factorization is Yun's algorithm .
Even so, this is a quite satisfactory method, considering that even the best-known algorithms have exponential time growth. For a chosen uniformly at random from integers of a given length, there is a 50% chance that 2 is a factor of a and a 33% chance that 3 is a factor of a, and so on. It can be shown that 88% of all positive integers have a ...
The SNFS works as follows. Let n be the integer we want to factor. As in the rational sieve, the SNFS can be broken into two steps: First, find a large number of multiplicative relations among a factor base of elements of Z/nZ, such that the number of multiplicative relations is larger than the number of elements in the factor base.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An optimal strategy for choosing these polynomials is not known; one simple method is to pick a degree d for a polynomial, consider the expansion of n in base m (allowing digits between −m and m) for a number of different m of order n 1/d, and pick f(x) as the polynomial with the smallest coefficients and g(x) as x − m.