Search results
Results from the WOW.Com Content Network
The stratosphere is the second-lowest layer of Earth's atmosphere. It lies above the troposphere and is separated from it by the tropopause. This layer extends from the top of the troposphere at roughly 12 km (7.5 mi; 39,000 ft) above Earth's surface to the stratopause at an altitude of about 50 to 55 km (31 to 34 mi; 164,000 to 180,000 ft).
The troposphere is the lowest layer of the atmosphere. This extends from the planetary surface to the bottom of the stratosphere. The troposphere contains 75–80% of the mass of the atmosphere, [9] and is the atmospheric layer wherein the weather occurs; the height of the troposphere varies between 17 km at the equator and 7.0 km at the poles.
In addition to the surface layer, the planetary boundary layer also comprises the PBL core (between 0.1 and 0.7 of the PBL depth) and the PBL top or entrainment layer or capping inversion layer (between 0.7 and 1 of the PBL depth). Four main external factors determine the PBL depth and its mean vertical structure:
This page was last edited on 23 December 2018, at 15:05 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Diagram showing the five primary layers of the Earth's atmosphere: exosphere, thermosphere, mesosphere, stratosphere, and troposphere. The layers are not to scale. The stratosphere (/ ˈ s t r æ t ə ˌ s f ɪər,-t oʊ-/) is the second-lowest layer of the atmosphere of Earth, located above the troposphere and below the mesosphere.
The named layers of the atmosphere apply only to the measured temperature profile, because their definition relies on the presence of inversions. A multi-layered model of a greenhouse atmosphere will produce predicted temperatures for the atmosphere that decrease with height, asymptotically approaching the skin temperature at high altitudes. [ 3 ]
This page was last edited on 26 November 2024, at 18:04 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...