Search results
Results from the WOW.Com Content Network
Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space. A Hilbert space is a special case of a Banach space.
Let denote a random variable with domain and distribution .Given a symmetric, positive-definite kernel: the Moore–Aronszajn theorem asserts the existence of a unique RKHS on (a Hilbert space of functions : equipped with an inner product , and a norm ‖ ‖) for which is a reproducing kernel, i.e., in which the element (,) satisfies the reproducing property
Let be an arbitrary set and a Hilbert space of real-valued functions on , equipped with pointwise addition and pointwise scalar multiplication.The evaluation functional over the Hilbert space of functions is a linear functional that evaluates each function at a point ,
The Hilbert transform can be understood in terms of a pair of functions f(x) and g(x) such that the function = + is the boundary value of a holomorphic function F(z) in the upper half-plane. [32] Under these circumstances, if f and g are sufficiently integrable, then one is the Hilbert transform of the other.
The vector space of all continuous antilinear functions on H is called the anti-dual space or complex conjugate dual space of H and is denoted by ¯ ′ (in contrast, the continuous dual space of H is denoted by ′), which we make into a normed space by endowing it with the canonical norm (defined in the same way as the canonical norm on the ...
where H(D) is the space of holomorphic functions in D. Then L 2,h (D) is a Hilbert space: it is a closed linear subspace of L 2 (D), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D
Moreover, the following completeness identity for the above Hermite functions holds in the sense of distributions: = () = (), where δ is the Dirac delta function, ψ n the Hermite functions, and δ(x − y) represents the Lebesgue measure on the line y = x in R 2, normalized so that its projection on the horizontal axis is the usual Lebesgue ...
A rigged Hilbert space is a pair (H, Φ) with H a Hilbert space, Φ a dense subspace, such that Φ is given a topological vector space structure for which the inclusion map i is continuous. Identifying H with its dual space H * , the adjoint to i is the map i ∗ : H = H ∗ → Φ ∗ . {\displaystyle i^{*}:H=H^{*}\to \Phi ^{*}.}