Search results
Results from the WOW.Com Content Network
Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]
When Newton's laws are applied to rotating extended bodies, they lead to new quantities that are analogous to those invoked in the original laws. The analogue of mass is the moment of inertia, the counterpart of momentum is angular momentum, and the counterpart of force is torque. Angular momentum is calculated with respect to a reference point ...
The moment of inertia depends on how mass is distributed around an axis of rotation, and will vary depending on the chosen axis. For a point-like mass, the moment of inertia about some axis is given by , where is the distance of the point from the axis, and is the mass. For an extended rigid body, the moment of inertia is just the sum of all ...
The inertia and the inertial mass describe this property of physical bodies at the qualitative and quantitative level respectively. According to Newton's second law of motion, if a body of fixed mass m is subjected to a single force F, its acceleration a is given by F/m.
In an inertial frame, Newton's first law, the law of inertia, is satisfied: Any free motion has a constant magnitude and direction. [39] Newton's second law for a particle takes the form: F = m a , {\displaystyle \mathbf {F} =m\mathbf {a} \ ,}
The moment of inertia is the 2nd moment of mass: = for a point mass, for a collection of point masses, or () for an object with mass distribution (). The center of mass is often (but not always) taken as the reference point.
The term "inertia" was used by Kepler who applied it to bodies at rest. (The first law of motion is now often called the law of inertia.) Galileo did not fully grasp the third law of motion, the law of the equality of action and reaction, though he corrected some errors of Aristotle. With Stevin and others Galileo also wrote on statics. He ...
The inertia matrix of a rigid system of particles depends on the choice of the reference point. [4] There is a useful relationship between the inertia matrix relative to the center of mass R and the inertia matrix relative to another point S. This relationship is called the parallel axis theorem.