enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic hysteresis - Wikipedia

    en.wikipedia.org/wiki/Magnetic_hysteresis

    Magnetic hysteresis can be characterized in various ways. In general, the magnetic material is placed in a varying applied H field, as induced by an electromagnet, and the resulting magnetic flux density (B field) is measured, generally by the inductive electromotive force introduced on a pickup coil nearby the sample.

  3. Hysteresis - Wikipedia

    en.wikipedia.org/wiki/Hysteresis

    The phenomenon of hysteresis in ferromagnetic materials is the result of two effects: rotation of magnetization and changes in size or number of magnetic domains. In general, the magnetization varies (in direction but not magnitude) across a magnet, but in sufficiently small magnets, it does not.

  4. Jiles–Atherton model - Wikipedia

    en.wikipedia.org/wiki/Jiles–Atherton_model

    In electromagnetism and materials science, the Jiles–Atherton model of magnetic hysteresis was introduced in 1984 by David Jiles and D. L. Atherton. [1] This is one of the most popular models of magnetic hysteresis. Its main advantage is the fact that this model enables connection with physical parameters of the magnetic material. [2]

  5. Saturation (magnetic) - Wikipedia

    en.wikipedia.org/wiki/Saturation_(magnetic)

    Different materials have different saturation levels. For example, high permeability iron alloys used in transformers reach magnetic saturation at 1.6–2.2 teslas (T), [ 4 ] whereas ferrites saturate at 0.2–0.5 T. [ 5 ] Some amorphous alloys saturate at 1.2–1.3 T. [ 6 ] Mu-metal saturates at around 0.8 T. [ 7 ] [ 8 ]

  6. Coercivity - Wikipedia

    en.wikipedia.org/wiki/Coercivity

    Typically the coercivity of a magnetic material is determined by measurement of the magnetic hysteresis loop, also called the magnetization curve, as illustrated in the figure above. The apparatus used to acquire the data is typically a vibrating-sample or alternating-gradient magnetometer. The applied field where the data line crosses zero is ...

  7. Magnetic core - Wikipedia

    en.wikipedia.org/wiki/Magnetic_core

    The amount that the magnetic field is increased by the core depends on the magnetic permeability of the core material. Because side effects such as eddy currents and hysteresis can cause frequency-dependent energy losses, different core materials are used for coils used at different frequencies.

  8. Ferromagnetic material properties - Wikipedia

    en.wikipedia.org/wiki/Ferromagnetic_material...

    Hysteresis loop Induction B as function of field strength H for H varying between H min and H max; for ferromagnetic material the B has different values for H going up and down, therefore a plot of the function forms a loop instead of a curve joining two points; for perminvar type materials, the loop is a "rectangle" (Domain Structure of Perminvar Having a Rectangular Hysteresis Loop, Williams ...

  9. Bean's critical state model - Wikipedia

    en.wikipedia.org/wiki/Bean's_critical_state_model

    C. P. Bean postulated for the Shubnikov phase an extraordinary shielding process due to the microscopic structure of the materials. He assumed lossless transport with a critical current density J c (B) (J c (B→0) = const. and J c (B→∞) = 0). An external magnetic field is shielded in the Meissner phase (H < H c1) in the same way as in a ...