enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's theorem on sums of two squares - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem_on_sums_of...

    For the avoidance of ambiguity, zero will always be a valid possible constituent of "sums of two squares", so for example every square of an integer is trivially expressible as the sum of two squares by setting one of them to be zero. 1. The product of two numbers, each of which is a sum of two squares, is itself a sum of two squares.

  3. Pythagorean addition - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_addition

    This implementation has the downside that it requires an additional floating-point division, which can double the cost of the naive implementation, as multiplication and addition are typically far faster than division and square root. Typically, the implementation is slower by a factor of 2.5 to 3. [11]

  4. Sum of squares - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares

    The squared Euclidean distance between two points, equal to the sum of squares of the differences between their coordinates; Heron's formula for the area of a triangle can be re-written as using the sums of squares of a triangle's sides (and the sums of the squares of squares) The British flag theorem for rectangles equates two sums of two ...

  5. Sum of two squares theorem - Wikipedia

    en.wikipedia.org/wiki/Sum_of_two_squares_theorem

    The prime decomposition of the number 2450 is given by 2450 = 2 · 5 2 · 7 2. Of the primes occurring in this decomposition, 2, 5, and 7, only 7 is congruent to 3 modulo 4. Its exponent in the decomposition, 2, is even. Therefore, the theorem states that it is expressible as the sum of two squares. Indeed, 2450 = 7 2 + 49 2.

  6. Pythagorean prime - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_prime

    The sum of one odd square and one even square is congruent to 1 mod 4, but there exist composite numbers such as 21 that are 1 mod 4 and yet cannot be represented as sums of two squares. Fermat's theorem on sums of two squares states that the prime numbers that can be represented as sums of two squares are exactly 2 and the odd primes congruent ...

  7. Sum of squares function - Wikipedia

    en.wikipedia.org/wiki/Sum_of_squares_function

    The number of ways to write a natural number as sum of two squares is given by r 2 (n).It is given explicitly by = (() ())where d 1 (n) is the number of divisors of n which are congruent to 1 modulo 4 and d 3 (n) is the number of divisors of n which are congruent to 3 modulo 4.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.