Search results
Results from the WOW.Com Content Network
A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain. These segments are called its edges or sides, and the points where two of the edges meet are the polygon's vertices (singular ...
Megagon - 1,000,000 sides; Star polygon – there are multiple types of stars Pentagram - star polygon with 5 sides; Hexagram – star polygon with 6 sides Star of David (example) Heptagram – star polygon with 7 sides; Octagram – star polygon with 8 sides Star of Lakshmi (example) Enneagram - star polygon with 9 sides; Decagram - star ...
In geometry, a pentagon (from Greek πέντε (pente) 'five' and γωνία (gonia) 'angle' [1]) is any five-sided polygon or 5-gon. The sum of the internal angles in a simple pentagon is 540°. A pentagon may be simple or self-intersecting. A self-intersecting regular pentagon (or star pentagon) is called a pentagram.
A skew hexagon is a skew polygon with six vertices and edges but not existing on the same plane. The interior of such a hexagon is not generally defined. A skew zig-zag hexagon has vertices alternating between two parallel planes. A regular skew hexagon is vertex-transitive with equal edge lengths.
The five known Fermat primes are: F 0 = 3, F 1 = 5, F 2 = 17, F 3 = 257, and F 4 = 65537 (sequence A019434 in the OEIS). Since there are 31 nonempty subsets of the five known Fermat primes, there are 31 known constructible polygons with an odd number of sides. The next twenty-eight Fermat numbers, F 5 through F 32, are known to be composite. [3]
For example, the icosahedron is {3,5+} 1,0, and pentakis dodecahedron, {3,5+} 1,1 is seen as a regular dodecahedron with pentagonal faces divided into 5 triangles. The primary face of the subdivision is called a principal polyhedral triangle (PPT) or the breakdown structure. Calculating a single PPT allows the entire figure to be created.
The white polygon lines represent the "vertex figure" polygon. The colored faces are included on the vertex figure images help see their relations. Some of the intersecting faces are drawn visually incorrectly because they are not properly intersected visually to show which portions are in front.
[2]: p. 1 They could also construct half of a given angle, a square whose area is twice that of another square, a square having the same area as a given polygon, and regular polygons of 3, 4, or 5 sides [2]: p. xi (or one with twice the number of sides of a given polygon [2]: pp. 49–50 ).