Search results
Results from the WOW.Com Content Network
An eight-bit processor like the Intel 8008 addresses eight bits, but as this is the full width of the accumulator and other registers, this could be considered either byte-addressable or word-addressable. 32-bit x86 processors, which address memory in 8-bit units but have 32-bit general-purpose registers and can operate on 32-bit items with a ...
For example, the 68000 exposed only 24 bits of addressing on the DIP, limiting it to a still huge (for the era) 16 MB. [ 11 ] A similar analysis applies to Intel's 80286 CPU replacement, called the 386SX , which is a 32-bit processor with 32-bit ALU and internal 32-bit data paths with a 16-bit external bus and 24-bit addressing of the processor ...
In theory, modern byte-addressable 64-bit computers can address 2 64 bytes (16 exbibytes), but in practice the amount of memory is limited by the CPU, the memory controller, or the printed circuit board design (e.g., number of physical memory connectors or amount of soldered-on memory).
Compression algorithms often code in bitstreams, as the 8 bits offered by a byte (the smallest addressable unit of memory) may be wasteful. Although typically implemented in low-level languages, some high-level languages such as Python [1] and Java [2] offer native interfaces for bitstream I/O.
If that memory is arranged in a byte-addressable flat address space using 8-bit bytes, then there are 65,536 (2 16) valid addresses, from 0 to 65,535, each denoting an independent 8 bits of memory. If instead it is arranged in a word-addressable flat address space using 32-bit words, then there are 16,384 (2 14 ) valid addresses, from 0 to ...
A processor with 128-bit byte addressing could directly address up to 2 128 (over 3.40 × 10 38) bytes, which would greatly exceed the total data captured, created, or replicated on Earth as of 2018, which has been estimated to be around 33 zettabytes (over 2 74 bytes). [1] A 128-bit register can store 2 128 (over 3.40 × 10 38) different
A memory address a is said to be n-byte aligned when a is a multiple of n (where n is a power of 2). In this context, a byte is the smallest unit of memory access, i.e. each memory address specifies a different byte. An n-byte aligned address would have a minimum of log 2 (n) least-significant zeros when expressed in binary.
Unlike an address space, a dataspace or hiperspace contains only user data; it does not contain system control blocks or common areas. Program code cannot run in a dataspace or a hiperspace. [27] A dataspace differs from a hiperspace in that dataspaces are byte-addressable, whereas hiperspaces are page-addressable.